41 research outputs found

    Evolution of the X-ray Profiles of Poor Clusters from the XMM-LSS Survey

    Full text link
    A sample consisting of 27 X-ray selected galaxy clusters from the XMM-LSS survey is used to study the evolution in the X-ray surface brightness profiles of the hot intracluster plasma. These systems are mostly groups and poor clusters, with temperatures 0.6-4.8 keV, spanning the redshift range 0.05 to 1.05. Comparing the profiles with a standard beta-model motivated by studies of low redshift groups, we find 54% of our systems to possess a central excess, which we identify with a cuspy cool core. Fitting beta-model profiles, allowing for blurring by the XMM point spread function, we investigate trends with both temperature and redshift in the outer slope (beta) of the X-ray surface brightness, and in the incidence of cuspy cores. Fits to individual cluster profiles and to profiles stacked in bands of redshift and temperature indicate that the incidence of cuspy cores does not decline at high redshifts, as has been reported in rich clusters. Rather such cores become more prominent with increasing redshift. Beta shows a positive correlation with both redshift and temperature. Given the beta-T trend seen in local systems, we assume that temperature is the primary driver for this trend. Our results then demonstrate that this correlation is still present at z~0.3, where most of our clusters reside.Comment: Accepted for publication in MNRAS. 15 pages, 12 figure

    Covariance matrices for halo number counts and correlation functions

    Full text link
    We study the mean number counts and two-point correlation functions, along with their covariance matrices, of cosmological surveys such as for clusters. In particular, we consider correlation functions averaged over finite redshift intervals, which are well suited to cluster surveys or populations of rare objects, where one needs to integrate over nonzero redshift bins to accumulate enough statistics. We develop an analytical formalism to obtain explicit expressions of all contributions to these means and covariance matrices, taking into account both shot-noise and sample-variance effects. We compute low-order as well as high-order (including non-Gaussian) terms. We derive expressions for the number counts per redshift bins both for the general case and for the small window approximation. We estimate the range of validity of Limber's approximation and the amount of correlation between different redshift bins. We also obtain explicit expressions for the integrated 3D correlation function and the 2D angular correlation. We compare the relative importance of shot-noise and sample-variance contributions, and of low-order and high-order terms. We check the validity of our analytical results through a comparison with the Horizon full-sky numerical simulations, and we obtain forecasts for several future cluster surveys.Comment: 37 page

    A New X-ray Selected Sample of Very Extended Galaxy Groups from the ROSAT All-Sky Survey

    Full text link
    Some indications for tension have long been identified between cosmological constraints obtained from galaxy clusters and primary CMB measurements. Typically, assuming the matter density and fluctuations, as parameterized with Omega_m and sigma_8, estimated from CMB measurements, many more clusters are expected than those actually observed. One possible explanation could be that certain types of galaxy groups or clusters were missed in samples constructed in previous surveys, resulting in a higher incompleteness than estimated. We aim to determine if a hypothetical class of very extended, low surface brightness, galaxy groups or clusters have been missed in previous X-ray cluster surveys based on the ROSAT All-Sky Survey (RASS). We applied a dedicated source detection algorithm sensitive also to more unusual group or cluster surface brightness distributions. We found many known but also a number of new group candidates, which are not included in any previous X-ray / SZ cluster catalogs. In this paper, we present a pilot sample of 13 very extended groups discovered in the RASS at positions where no X-ray source has been detected previously and with clear optical counterparts. The X-ray fluxes of at least 5 of these are above the nominal flux-limits of previous RASS cluster catalogs. They have low mass (1013−1014M⊙10^{13} - 10^{14} M_{\odot}; i.e., galaxy groups), are at low redshift (z<0.08), and exhibit flatter surface brightness distributions than usual. We demonstrate that galaxy groups were missed in previous RASS surveys, possibly due to the flat surface brightness distributions of this potential new population. Analysis of the full sample will show if this might have a significant effect on previous cosmological parameter constraints based on RASS cluster surveys. (This is a shortened version of the abstract - full text in the article)Comment: 18 pages, 7 figures, accepted by A&

    High-redshift galaxy groups as seen by Athena/WFI

    Full text link
    The first massive galaxy groups in the Universe are predicted to have formed at redshifts well beyond two. Baryonic physics, like stellar and active galactic nuclei (AGN) feedback in this very active epoch, are expected to have left a strong imprint on the thermo-dynamic properties of these early galaxy groups. Therefore, observations of these groups are key to constrain the relative importance of these physical processes. However, current instruments are not sensitive enough to detect them easily and characterize their hot gas content. In this work, we quantify the observing power of the Advanced Telescope for High ENergy Astrophysics (Athena), the future large X-ray observatory of the European Space Agency (ESA), for discovering and characterizing early galaxy groups at high redshifts. We used the SImulation of X-ray TElescopes (SIXTE) simulator to mimic Athena observations, and a custom-made wavelet-based algorithm to detect galaxy groups and clusters in the redshift range 0.5≤z≤40.5 \le z \le 4. We performed extensive X-ray spectral fitting in order to characterize their gas temperature and X-ray luminosity. We also investigate how well Athena will constrain different feedback mechanisms. In the deep Wide Field Imager (WFI) survey expected to be carried out during part of Athena's first four years (the nominal mission lifetime) more than 10,000 galaxy groups and clusters at z≥0.5z\ge 0.5 will be discovered. We find that Athena can detect ∼20\sim20 high-redshift galaxy groups with masses of M500≥M_{500}\geq 5×10135\times 10^{13} M⊙M_{\odot} and z≥2z\geq2, and almost half of them will have a gas temperature determined to a precision of ΔT/T≤25%\Delta T/T \le 25\%. We demonstrate that high-redshift galaxy groups can be detected very efficiently as extended sources by Athena and that a key parameter determining the total number of such newly discovered sources is the area on the sky surveyed by Athena.Comment: 24 pages, 18 figures, accepted for publication in A&

    Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    Get PDF
    Radio haloes are diffuse synchrotron sources on scales of ~1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by mergerdriven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope.We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes

    Luminosity Functions of XMM-LSS C1 Galaxy Clusters

    Full text link
    CFHTLS optical photometry has been used to study the galaxy luminosity functions of 14 X-ray selected clusters from the XMM-LSS survey. These are mostly groups and poor clusters, with masses (M_{500}) in the range 0.6 to 19x10 ^{13} M_solar and redshifts 0.05-0.61. Hence these are some of the highest redshift X-ray selected groups to have been studied. Lower and upper colour cuts were used to determine cluster members. We derive individual luminosity functions (LFs) for all clusters as well as redshift-stacked and temperature-stacked LFs in three filters, g', r' and z', down to M=-14.5. All LFs were fitted by Schechter functions which constrained the faint-end slope, alpha, but did not always fit well to the bright end. Derived values of alpha ranged from -1.03 to as steep as -2.1. We find no evidence for upturns at faint magnitudes. Evolution in alpha was apparent in all bands: it becomes shallower with increasing redshift; for example, in the z' band it flattened from -1.75 at low redshift to -1.22 in the redshift range z=0.43-0.61. Eight of our systems lie at z~0.3, and we combine these to generate a galaxy LF in three colours for X-ray selected groups and poor clusters at redshift 0.3. We find that at z~0.3 alpha is steeper (-1.67) in the green (g') band than it is (-1.30) in the red (z') band. This colour trend disappears at low redshift, which we attribute to reddening of faint blue galaxies from z~0.3 to z~0. We also calculated the total optical luminosity and found it to correlate strongly with X-ray luminosity (L_X proportional to L_OPT^(2.1)), and also with ICM temperature (L_OPT proportional to T^(1.62)), consistent with expectations for self-similar clusters with constant mass-to-light ratio. We did not find any convincing correlation of Schechter parameters with mean cluster temperature.Comment: 23 pages, 17 figure

    Weak lensing measurements of the APEX-SZ galaxy cluster sample

    Get PDF
    We present a weak lensing analysis for galaxy clusters from the APEX-SZ survey. For 39 massive galaxy clusters that were observed via the Sunyaev–Zel’dovich effect (SZE) with the APEX telescope, we analyse deep optical imaging data from WFI(@2.2mMPG/ESO) and Suprime-Cam(@SUBARU) in three bands. The masses obtained in this study, including an X-ray selected sub-sample of 27 clusters, are optimized for and used in studies constraining the mass to observable scaling relations at fixed cosmology. A novel focus of our weak lensing analysis is the multicolour background selection to suppress effects of cosmic variance on the redshift distribution of source galaxies. We investigate the effects of cluster member contamination through galaxy density, shear profile, and recovered concentrations. We quantify the impact of variance in source redshift distribution on the mass estimate by studying nine sub-fields of the COSMOS survey for different cluster redshift and magnitude limits. We measure a standard deviation of ∼6 per cent on the mean angular diameter distance ratio for a cluster at z = 0.45 and shallow imaging data of R ≈ 23 mag. It falls to ∼1 per cent for deep, R = 26 mag, observations. This corresponds to 8.4 per cent and 1.4 per cent scatter in M200. Our background selection reduces this scatter by 20−40 per cent, depending on cluster redshift and imaging depth. We derived cluster masses with and without using a mass concentration relation and find consistent results, and concentrations consistent with the used mass–concentration relation

    The XXL Survey:XLII. Scatters and correlations of X-ray proxies in the bright XXL cluster sample

    Get PDF
    http://irfu.cea.fr/xxl/International audienceContext. Scaling relations between cluster properties embody the formation and evolution of cosmic structure. Intrinsic scatters and correlations between X-ray properties are determined from merger history, baryonic processes, and dynamical state.Aims. We look for an unbiased measurement of the scatter covariance matrix among the three main X-ray observable quantities attainable in large X-ray surveys: temperature, luminosity, and gas mass. This also gives us the cluster property with the lowest conditional intrinsic scatter at fixed mass.Methods. Intrinsic scatters and correlations can be measured under the assumption that the observable properties of the intra-cluster medium hosted in clusters are log-normally distributed around power-law scaling relations. The proposed method is self-consistent, based on minimal assumptions, and requires neither external calibration by weak lensing, or dynamical or hydrostatic masses, nor the knowledge of the mass completeness.Results. We analysed the 100 brightest clusters detected in the XXL Survey and their X-ray properties measured within a fixed radius of 300 kpc. The gas mass is the less scattered proxy (∼8%). The temperature (∼20%) is intrinsically less scattered than the luminosity (∼30%), but it is measured with a larger observational uncertainty. We found some evidence that gas mass, temperature, and luminosity are positively correlated. Time evolutions are in agreement with the self-similar scenario, but the luminosity–temperature and the gas mass–temperature relations are steeper.Conclusion. Positive correlations between X-ray properties can be determined by the dynamical state and the merger history of the halos. The slopes of the scaling relations are affected by radiative processes

    The cosmological analysis of X-ray cluster surveys: II- Application of the CR-HR method to the XMM archive

    Full text link
    We have processed 2774 high-galactic observations from the XMM archive (as of May 2010) and extracted a serendipitous catalogue of some 850 clusters of galaxies based on purely X-ray criteria, following the methodology developed for the XMM-LSS survey. Restricting the sample to the highest signal-to-noise objects (347 clusters), we perform a cosmological analysis using the X-ray information only. The analysis consists in the modelling of the observed colour-magnitude (CR-HR) diagram constructed from cluster instrumental count-rates measured in the [0.5-2], [1-2] and [0.5-1] keV bands. A MCMC procedure simultaneously fits the cosmological parameters, the evolution of the cluster scaling laws and the selection effects. Our results are consistent with the sigma_8 and Omega_m values obtained by WMAP-5 and point toward a negative evolution of the cluster scaling relations with respect to the self-similar expectation. We are further able to constrain the cluster fractional radius xc0=r_c/r500c, to xc0=0.24 +/- 0.04. This study stresses again the critical role of selection effects in deriving cluster scaling relations, even in the local universe. Finally, we show that CR-HR method applied to the eRosita all-sky survey - provided that cluster photometric redshifts are available - will enable the determination of the equation of state of the dark energy at the level of the DETF stage IV predictions; simultaneously, the evolution of the cluster scaling-relations will be unambiguously determined. The XMM CLuster Archive Super Survey (XCLASS) serendipitous cluster catalogue is available online at: http://xmm-lss.in2p3.fr:8080/l4sdb/.Comment: 26 pages, 24 figures, 9 tables. Accepted for publication in MNRAS (minor changes with respect to submitted version). The corresponding galaxy cluster catalogue is available at http://xmm-lss.in2p3.fr:8080/l4sdb
    corecore